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ABSTRACT. The asymptotics for the number of field extensions of Q with a fixed Galois group
are not known in general, but Malle has conjectures for them. However, in many specific cases,
such as for all abelian groups, as well as for some select non-Galois extensions, the conjectures
have been proved. In this paper we review some recent results and some aspects of their proofs,
such as the geometric sieve. For the case of Sr × A extensions that we consider, we review the
methods for using the asymptotics for fields with fixed Galois groups to find the asymptotics for
the fields whose Galois group is the product of the two groups. In particular, we need a uniformity
theorem, to find an upper bound for the number of extensions ramified at large primes, because
in the proof we will be summing over ramification conditions. The main tool which is used here is
the geometric sieve, which is used to count points on varieties, and relate that to this problem by
using the parametrization of quintic rings which writes the discriminant as a polynomial defined on
a vector space, and by finding a subscheme in which the polynomial must have certain divisibility
conditions. More specifically, we will review a result which estimates the growth of the number of
lattice points on a fixed variety in a given region, with the size of region as the region expands.
We will also review a result to convert the problem of counting orbits on vector spaces such that a
given polynomial satisfies a prescribed set of congruence conditions into a problem of computing an
integral over an appropriate fundamental domain of a group action. The integrand in this case will
be of the form in which the first result will be applicable.

1 Introduction

To understand the primes in a field extension K/Q, we may consider the discriminant Disc K of the extension,
which has the property that the primes dividing the discriminant are the primes ramified in the extension. A
way of determining the distribution of isomorphism classes of number fields, using a more analytic approach, is
to consider those with a fixed Galois group G = Gal(K/Q) (or an analogue for non-Galois extensions, which will
be mentioned below) whose discriminant is bounded by some number X, and find the asymptotics in the limit
X → ∞. This would be a measure of the number of additional properties of number fields with Galois group G
in addition to its discriminant. For example, for quadratic fields, there is only one field for a given discriminant
D (namely K = Q(

√
D)). For Z/2Z × Z/2Z extensions, note that, for example, Disc Q(

√
a,
√
b) = 64a2b2 when

a and b are squarefree, gcd(a, b) = 1, and a ≡ b ≡ 3 (mod 4), as {1,
√
a,
√
b, 1+

√
ab

2
} is an integral basis. The

number of such extensions with Disc K = 64p21p
2
2 · · · p2n with pi ≡ 3 (mod 4) is then at least 2n−1 (these take

the form K = Q(
√
P ,
√
α) where P = p1p2 · · · pn and α is any product of the primes pi). More generally, the

allowed discriminants are the squares of squarefree integers multiplied by a small power of 2 depending on modulo 4
congruence conditions on the discriminants of the three quadratic subfields. As the number of extensions with a fixed
discriminant with n prime factors tends to infinity with n, we see that the number of Z/2Z×Z/2Z extensions should
grow asymptotically faster than

√
X. (Note that as remarked in [16], the number of squarefree integers less than x is

O(x), hence we see the number of allowed discriminants up to X is O
(√
X
)
.) However, the number of Z/2Z× Z/2Z

extensions K/Q with a given discriminant Disc K = X is o(Xε) for any ε > 0 so the number of extensions will grow
much slower than X.

The asymptotics for the number of Galois extensions of Q with a given Galois group G with discriminant at most
X have been conjectured by Malle [13]. For more general non-Galois extensions K with Galois closure L, we may
consider as in [13] the subgroup GK ≤ S[K:Q] resulting from the action of Gal(L/Q) on the set of embeddings K → L.
Using the notation from [17], for any group G with an embedding G→ Sn, we would like to find the asymptotics of

N(G,X) := |{K/Q : |Disc K| ≤ X, GK ∼= G as permutation groups}|,

where by GK ∼= G as permutation groups we mean that there is an automorphism φ ∈ Aut Sn such that φ(GK) = G.
In the case of Galois extensions, note that there is a natural embedding G → S|G| for any finite group G. There
happens to be one restriction on embeddings G→ Sn that are isomorphic to groups of the form GK as permutation
groups, in particular, that the action of G on the set {1, 2, . . . , n} is transitive. For the group GK , this follows from
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the result in Galois theory that all subfields of the Galois closure L of K which are isomorphic to K are actually
Galois conjugates of K. Malle’s conjecture over Q for general (not necessarily Galois) extensions is the following.

Conjecture 1. (Malle, 2004) [13] Let G→ Sn be an embedding such that G acts transitively on the set {1, 2, . . . , n}.
Let Og be the number of orbits in {1, 2, . . . , n} under the action of the cyclic subgroup 〈g〉 ≤ G. Consider the action
of Gal (Q/Q) on the group generated by a primitive |G|-th root of unity ζ; this extends to an action on G by the
function g → ζ|G|/ord g. Let A(G) = min

g∈G\{1}
(n − Og) and let b(G) be the number of orbits of the set of conjugacy

classes {[g] : n−Og = a(G)} under the action of Gal(Q/Q). Then

N(G,X) ∼ CX1/A(G) logb(G)−1X

as X →∞ for some constant C depending only on G. (Note that n−Og is typically called the index of g.)

This conjecture was actually stated in [13] for arbitrary base fields k, where the constant c can also depend on
k, and the constant b is modified slightly. In particular, as the absolute Galois group Gal(Q/Q) acts on the set of
conjugacy classes of G, we may restrict the action to the absolute Galois group of k and define b(G, k) as the number
of orbits of the set of conjugacy classes |g| : n − Og = A(g) under the action of Gal(Q/k). In this paper, although
much work has been done over arbitrary base fields, we will be reviewing results and their proofs only over the base
field Q.

Let us evaluate this expression for the case G = Z/2Z × Z/2Z that we were considering earlier. First, as all
elements have order 2, the action of the absolute Galois group Gal(Q/Q) on G is trivial. Then the natural embedding
G→ S|G| which sends each element g ∈ G to the permutation on the elements of G corresponding to multiplication
by g, has image {1, (12)(34), (13)(24), (14)(23)} ⊆ S4, so that Og = 2 for all nontrivial g ∈ G. As G is abelian, we
deduce that A(G) = 2 and b(G) = 3, so that Malle’s conjecture predicts that N(G,X) ∼ CX1/2 log2X for some
constant C, which agrees with the earlier analysis.

Note that for Galois field extensions, Wright [18] proved the conjecture for all abelian groups G (in fact over
general number field bases k). In this case, the embedding of G as a permutation group is the natural one, and the
size of an orbit Og for any g ∈ G is simply the index [G : 〈g〉] = |G|/ord g. Then if p is the smallest prime factor of
|G|, Og is maximized for nontrivial g when g has order p, so that A(G) = |G|(1− 1/p). As remarked in [13], we may
deduce that b(G) = (|G[p]|−1)/[Q(ζ) : Q] where ζ is the primitive p-th root of unity; this is because Og is maximized
if and only if g is a nontrivial element of G[p], and the subgroup 〈g〉 for any such g has orbits of size [Q(ζ) : Q] under
the action of Gal(Q/Q). Then Malle’s conjecture for abelian groups G embedded naturally in S|G| is

N(G,X) ∼ CX
p

(p−1)|G| log
|G[p]|−1
[Q(ζ):Q] X

for some constant C. Wright proved this and a more general result with specified ramification conditions (see Section
2). A similar result for extensions K/Q which are direct products of non-Galois Sr degree-r extensions and abelian
Galois extensions (that is, in the earlier notation, GK ∼= Sr × H where H is abelian and Si × H is regarded as a
permutation group acting on the set {1, 2, . . . , r} ×H) has been proven in [14, 17] in the cases r = 3, 4, 5. For these
permutation groups it turns out that the constants A(G) and b(G) take much simpler forms. Following [17], if p is
the smallest prime divisor of |H| and (g, h) ∈ Sr × H, the number of orbits O(g,h) is simply the product OgOh of
the number of orbits of g in {1, 2, . . . , r} and the number of orbits of h in A. By noting that Og is maximized for
nontrivial g ∈ Sr when g is a transposition and Oh is maximized for nontrivial h ∈ H when h has order p, we deduce
that the maximum value of O(g,h) occurs when g is a transposition and h = 1, so that A(Sr ×H) = |H|. Since all
transpositions in Sr form a single conjugacy class, b(Sr × H) = 1, and Malle’s conjecture in this case becomes the
following theorem.

Theorem 2. (Masri-Thorne-Tsai-Wang) [14, 17] If G is the product Sr × A with a permutation action on the set
{1, 2, . . . , r} ×A, there exists a constant C depending only on G such that

N(G,X) ∼ CX1/|A|

in the limit X →∞.

To find the asymptotics for Sr × A extensions, with the embedding Sr × A → Sr|A| mentioned above, following
[17], one of the necessary steps is to obtain uniformity theorems, which give upper bounds for the number of non-
Galois Sr degree-r extensions with certain ramification conditions. These theorems show that the number of Sr
degree-r extensions of Q with discriminant bounded by X which are totally ramified (or overramified for r = 4, where
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overramified will be defined shortly) at some primes p1, p2, . . . , pm is uniformly smaller for larger q. More specifically,
for any positive squarefree integer q, we may define [17]

Nq(G,X) := |{K/Q : |Disc K| ≤ X, GK ∼= G as permutation groups,

K totally ramified or overramified at p ∀p|q}|,

where overramified applies to r = 4 and totally ramified applies to r = 3, 5. Here a prime p is overramified in an S4

non-Galois quartic extension K/Q (as defined in [1]) if p splits in K as a product of primes all of whose exponents
are greater than 1. Then we have the following theorem, for which the proof in the case r = 5 will be outlined in
Section 5.

Theorem 3. For any positive squarefree integer q and for any ε > 0, we have the following estimates for Nq(Sr, X)
as X →∞:

(a) (Datkovsky-Wright, 1988) [9] Nq(S3, X) = O(X/q2−ε)

(b) (Bhargava, 2005) [1] Nq(S4, X) = O(X/q2−ε)

(c) (Wang, 2017) [17] Nq(S5, X) = O(X/q4/15−ε)

In the sections below, we will explain how to combine the asymptotics for non-Galois Sr degree r extensions and
for abelian A extensions into the asymptotics for Sr × A degree r|A| extensions below with restrictions on A (in
particular, we assume that |A| is relatively prime to r!, which is slightly stricter than the conditions in [17]). We will
also need a uniformity result for Galois A-extensions, this time for all ramification types (see Section 2).

There are two methods used in the proof of Theorem 3, the first method for r = 3 and 4 uses class field theory,
and the case r = 5 uses the geometric sieve in [4]. The geometric sieve consists of two main steps. The first step,
the Ekedahl sieve (used in [16] for instance), is used to count the number of values of a polynomial that are not
multiples of pk for appropriate integers k and primes p. In the applications in [3, 16], this is used to count the
number of squarefree values of a polynomial, whereas to prove Theorem 3, we will be parametrizing non-Galois S5

quintic extensions using a polynomial, and using the Ekedahl sieve to apply the ramification conditions. For the
case of computing the density of squarefree values of a polynomial, the Ekedahl sieve method in [16] uses the ABC
conjecture. For the specific polynomials that are associated with counting non-Galois Sr degree-r extensions for
r = 3, 4 and 5, the ABC conjecture does not need to be assumed by instead proving a series of conditions relating
the polynomials to the orbits of vector spaces under the action of a group variety [4]. We will be explaining some of
these tools in Section 4.

2 Products of Number Fields

Consider the product of two number fields K and L, we would like to relate the discriminants of K and L with
the discriminant of the compositum KL, in order to use asymptotics for non-Galois Sr degree r extensions and for
abelian extensions, for example, to compute the asymptotics for Sr × A degree r|A| extensions. We will follow [17]
throughout this section unless otherwise noted.

In general, there could be two problems in counting such number fields. The first is that the degree of KL may
not be the product of the degrees of K and L. However, we note that if K is a non-Galois Sr degree-r extension,
L is a Galois A-extension for A an abelian group whose order is relatively prime to r!, and K′ is the Galois closure
of K, we find that K′ ∩ L = Q as [K′ ∩ L : Q] | gcd

(
[K′ : Q], [L : Q]

)
= gcd(r!, |A|) = 1. For such extensions, the

Fundamental Theorem of Galois Theory implies that [K′L : Q] = [K′ : Q][L : Q], and by taking explicit bases we
may see that the degree of KL is the product of the degrees of K and L as field extensions of Q, and further, that
GKL = GK ×GL. (It is important to consider the Galois closure of K, note that, for example, the extensions Q( 3

√
2)

and Q(ζ3) have relatively prime degrees and Q is their intersection, but the compositum is a Galois extension with
Galois group S3.)

The second problem is that the product of the rings of integers OK and OL of K and L is not necessarily equal
to OKL, so we cannot easily extend integral bases on OK and OL to OKL. This can be seen, for example, for the

fields K = Q(
√

3) and L = Q(
√

7), when the algebraic integer 1+
√
21

2
/∈ OKOL. Instead, the product OKOL becomes

a possibly non-maximal order in KL. This problem, unlike the previous one, does occur for the Sr × A extensions
that we are considering, and the rest of this section will discuss the resolution of this problem.

First, we compute the discriminant of the order OKOL for number fields K and L with degrees k and ` over
Q, such that K ∩ L = 1. If {r1, r2, . . . , rk} and {s1, s2, . . . , s`} are integral bases for OK and OL, as OKOL is
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an order in a field of degree k` over Q, the product {risj |1 ≤ i ≤ k, 1 ≤ j ≤ `} is an integral basis for OKOL,
and the discriminant is det(TrOKOL(ri1sj1ri2sj2))(i1,j1),(i2,j2)∈S where S = {1, 2, . . . , k}{1, 2, . . . , `} (using the trace
definition of the determinant [2, 15]). Note that the matrix that we are taking a determinant of has indices in S.
Now

TrOKOL(ri1sj1ri2sj2) = TrOK (ri1ri2)TrOL(sj1sj2),

The determinant can be naturally expressed as a sum over all permutations of S, we will show that we only need to
sum over those permutations arising as a product of permutations in Sk and S` (here for α ∈ Sk and β ∈ S`, define
the product αβ by αβ(i, j) = (α(i), β(j))). Indeed, if σ is a permutation of S that does not arise as a product in this
way, we may assume that π(σ(i, j)) 6= π(σ(i, j′)) for some i, where π is the projection to the first coordinate. For t
the transposition ((i, j)(i, j′)), the permutation σ ◦ t yields a term which is the negative of the term corresponding to
σ in the discriminant. Using this reduction, we may explicitly compute that

Disc OKOL = (Disc OK)`(Disc OL)k.

The key step in [17] used is to determine the differences between Disc KL and (Disc K)`(Disc L)k for a finite
range of primes p < M . More specifically, for any M > 0, let Disc(p) F be the largest power of p dividing Disc F for
any number field F , and define

DiscM KL =
∏
p<M

Disc(p)KL
∏
p≥M

(Disc(p)K)`(Disc(p) L)k.

As Disc KL | Disc O for any order O ⊆ OKL ([15], Proposition I.2.12), the quantity DiscM KL is an upper bound
for Disc KL, and is equal to Disc KL for any M which is larger than all of the ramified primes in KL/Q.

We will now explain how to get an upper and a lower bound for N(Sr × A,X), using the definition above. We
will first need to relate the discriminant of KL with the discriminants of K and L using ramification conditions, and
then we will find similar relations for DiscM KL. Note that the fields in question in the two lemmas below are not
necessarily Galois extensions.

Lemma 4. [17] Let F be a number field and let p - [F : Q] be a ramified prime in the extension F/Q. Then Disc(p) F
only depends on the inertia group Ip(F/Q) ≤ GK ≤ S[F :Q] of F/Q at p.

Proof. This is a consequence of the result ([15], Theorems III.2.6 and III.2.9) that logp Disc(p) F when p - [F : Q] is
the sum

∑
j(ej − 1)fj where j varies over the primes of K under p, ej denotes the ramification index and fj denotes

the inertia degree at the prime pj |p. To compute the number of orbits in the set of embeddings F → Q, we note
that F ⊗Q Qp is a direct sum of local fields (in particular it is the direct sum of the completions of F at the primes
splitting at p with the completion at a prime pj occurring ej times). The set of embeddings F → Q now corresponds
to the set of Qp-algebra homomorphisms F ⊗Q Qp → Qp (this is similar to what is described for general rings in [2]).

The Qp-algebra homomorphisms φ : F ⊗Q Qp → Qp are those which are an embedding in one factor and zero on all

of the others. As |Gal(Ffp/Fp)| = f for any positive integer f , the number of orbits under the inertia group among
those homomorphisms which correspond to an embedding of Fpj is fj (the inertia group permutes the ej different
factors of Fpj ). The total number of orbits is then the sum

∑
j fj , and as the inertia group on F/Q at p is defined

by local conditions, this inertia group has
∑
j fj orbits. Then logp Disc(p) F is

∑
j(ej − 1)fj = [F : Q]−

∑
j fj only

depends on the action of the inertia group on the [F : Q] embeddings F → Q.

The next lemma shows that we only need the inertia groups of two fields K and L to determine the largest power
of p dividing the discriminant of the compositum KL.

Lemma 5. [17] Let K and L be number fields of degrees r and s, respectively, such that GKL ≤ Srs is the product of
GK ≤ Sr and GL ≤ Ss. Suppose that p - [KL : Q] is a prime. Then Disc(p)KL only depends on the action of inertia
groups of K and L on the sets of embeddings K → Q and embeddings L→ Q.

This lemma follows from the previous one, by noting that the inertia group of KL is a subgroup of Srs, the group
of permutations on the set of pairs of embeddings K → Q, L→ Q, as the product of the inertia groups of K and L
in Sr and Ss. Then the orbits under the action of the inertia group of KL are products of orbits under the action of
K and orbits under the action of L, so that

Disc(p)KL = prs−(r−logp Disc(p) K)(s−logp Disc(p) L)

= p−(logp Disc(p) K)(logp Disc(p) L)(Disc(p)K)s(Disc(p) L)r (1)
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which only depends on the desired actions of the inertia groups of K and L by Lemma 4.
Now we will count Sr ×A number fields by counting the number fields with a specified set of local conditions and

summing over all possible ramification types, assuming that gcd(r!, |A|) = 1. By the two lemmas above, for primes
p - r|A|, Disc(p)KL can be expressed in terms of Disc(p)K and Disc(p) L by specifying the inertia groups of K and L.
Let S denote the set of all finite sets S of primes, with a choice of subgroups Ap ≤ Sr, Bp ≤ Ss for each p - r|A|, and
a choice of Qp-algebras Ap and Bp which are rank-r and rank-|A| Qp-modules, respectively, for every p | r|A|. For
any S ∈ S, we will suppose that the pair of fields (K,L) ∈ S if the set of primes at which both K and L are ramified
is S, if Ap and Bp are the inertia subgroups of K and L for p - r|A|, and if Ap and Bp are K ⊗ Qp and L ⊗ Qp for
p | r|A|. Since the exponent of p in the discriminant of a field F is the sum of the valuations of the discriminants of
the direct summands of F ⊗QQp, and KL⊗QQp can be expressed in terms of the Qp-algebras K⊗QQp and L⊗QQp,
we see that Disc KL can be expressed in terms of Disc K and Disc L, and the element of S corresponding to the
ramification of K and L at the primes of Q. For some fixed S ∈ S, by taking the product over all p of equation (1),
and noting that the power of p on the right hand side is not equal to 1 if and only if p ∈ S,

Disc KL = (Disc K)|A|(Disc L)r
∏
p∈S

p−(logp Disc(p) K)(logp Disc(p) L). (2)

In the expression above, note that dp,S,1 := logp Disc(p)K and dp,S,2 := logp Disc(p) L are completely determined by
p and S.

We will now find lower and upper bounds for N(Sr × A). First, we will define NM (Sr × A) just as we defined
N(Sr ×A), but with Disc KL replaced by DiscM KL. Note that by equation (2), if the pair of fields (K,L) ∈ S, and
S is the associated set of primes, Disc KL = DiscM KL for all M > maxS. Then by equation (2),

N(Sr ×A,X)−NM (Sr ×A,X) =
∑
S∈S

|{(K,L) ∈ S | Disc KL < X,DiscM KL > X}|

≤
∑
S∈S

maxS≥M

|{(K,L) ∈ S | Disc KL < X}|

=
∑
S∈S

maxS≥M

∣∣∣{(K,L) ∈ S
∣∣∣ (Disc K)|A|(Disc L)r < X

∏
p∈S

pdp,S,1dp,S,2
}∣∣∣. (3)

We can also compute NM (Sr × A,X) using a similar sum over ramification conditions. In this case, it turns out to
be easier to consider a different set of local conditions, and to consider the set of all primes up to M (as the largest
power of p dividing DiscM KL is (Disc(p)K)|A|(Disc(p) L)r). Let SM be the denote the set of all S ∈ S with the set
S to be chosen as the set of all primes less than M , and where trivial inertia groups may be chosen for any of the
primes. Note that SM is a finite set, while S is not. We then obtain the result

NM (Sr ×A,X) =
∑
S∈SM

∣∣∣{(K,L) ∈ S
∣∣∣ (Disc K)|A|(Disc L)r < X

∏
p<M

p−dp,S,1dp,S,2
}∣∣∣ (4)

just as in equation (3).
We will now explain how the results for Sr extensions and A extensions are combined to yield a result for Sr ×A

extensions. First, we will state the results for Sr and A extensions that we will need. For Sr extensions with r = 3, 4,
or 5, the general results for arbitrary ramification conditions are given in [7], and in particular, they determine
constants CS depending on r such that

NS(Sr, X) ∼ CSX, (5)

where NS(Sr, X) is the number of non-Galois Sr degree-r number fields K satisfying the set of local conditions S ∈ S.
Similarly, Wright [18] derived a result for NS(A,X) (defined similarly), and found constants DS such that

NS(A,X) ∼ DSX
p0

(p0−1)|A| log
|A[p0]|−1
[Q(ζ):Q] X (6)

for any S ∈ S, where p0 is the smallest prime divisor of |A|. Next, we will use the following lemma for combining
distributions. For the proof, which uses partial summation, see [17].

Lemma 6. (Wang, 2017) [17] Let f1, f2 : N → N be monotonic functions, and let Fi(X) be the largest integer such
that fi ≤ X. Suppose that C1, C2, r1, r2, s1, and s2 are constants such that Fi ∼ CiXri logsi X. If a and b are integers
with b > ar2/r1, there is a constant C depending on C1 and C2 such that∣∣{(x, y) ∈ N× N

∣∣ f1(x)af2(y)b < X
}∣∣ ∼ CXr1/a logs1 X.

If r1, r2, s1, s2, a, and b are fixed, then C ≤ DC1C2 for some constant D that does not depend on C1 and C2.
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Once these lemmas are used, we may compute the sums in equations (3) and (4). However, we will then need the
uniformity theorem, Theorem 3, to show that the infinite sum in equation (3) is bounded. The most important aspect
of Theorem 3 and the similar theorem for abelian extensions (for a proof of the uniformity of abelian extensions, see
[17]) that has not been shown in the estimates in [7] is the explicit dependence on the squarefree integer q. Precisely,

the constant DS = O
(
q
− p0

(p0−1)|A|+ε
)

for any ε > 0. Also, the proof of the results in [7] uses many similar geometric
sieve techniques, such as Lemma 11, and the consideration of fundamental domains in Section 5.

Let us combine the results above to find the desired asymptotics. For NM (Sr × A,X) we can use equations (5)
and (6) and Lemma 6 directly to find that for every S ∈ SM , there exists constants BS and a constant C such that

NM (Sr ×A,X) ∼
∑
S∈S

BSX
1/|A| = CMX

1/|A|, (7)

noting that r > p0
p0−1

, and that the sum is finite. Here CM :=
∑
S∈SBS .

It remains to uniformly bound N(Sr × A,X) − NM (Sr × A,X) as M → ∞. Note that in this case we have to
choose the distributions that will be input into Lemma 6 carefully; the natural choices NS(Sr, X) and NS(A,X) do
not yield optimal bounds as the discriminant has a common factor over all fields satisfying the local conditions in S.
For each S ∈ S, let F1(S, X) be the number of non-Galois Sr degree-r fields satisfying the local conditions in S such
that

∏
p/∈S Disc(p)K < X, and let F2(S, X) be the similarly defined distribution for abelian extensions. Then by the

uniformity theorems, if T denotes the set of totally ramified (or overramified primes) in S, and t is the constant such
that CS = O(q−t+ε) for any ε > 0 when q =

∏
p∈T p (where t = 2 for r = 3, 4 and t = 4/15 for r = 5),

F1(S, X) = NS
(
Sr, X

∏
p∈S

pdp,S,1
)

= O
(
X
∏
p∈S

pdp,S,1
∏
p∈T

p−t+ε
)

and

F2(S, X) = NS
(
A,X

∏
p∈S

pdp,S,2
)

= O
(
X

p0
(p0−1)|A| log

|A[p0]|−1
[Q(ζ):Q] XDS

∏
p∈S

pdp,S,2(1+ε/2)
)

= O
(
X

p0
(p0−1)|A| log

|A[p0]|−1
[Q(ζ):Q] X

∏
p∈S

pεdp,S,2
)
,

for any ε > 0 where the constants do not depend on S. By Lemma 6, we see that for sufficiently large X, there exists
some constant C such that

N(Sr ×A,X)−NM (Sr ×A,X)

≤ CX1/|A|
∑
S∈S

maxS>M

∏
p∈S

pdp,S,1+εdp,S,2+(dp,S,1dp,S,2−|A|dp,S,1−rdr,S,2)/|A|
∏
p∈T

p−t+ε

= CX1/|A|
∑
S∈S

maxS>M

∏
p∈S

p−dp,S,2(dp,S,1−r)/|A|
∏
p∈T

p−t+ε.

Now we can factor out the contributions from the primes p | r|A|. This can be achieved by splitting the sum over
elements of S into a sum over the part of S corresponding to local conditions over primes p - r|A|, and a sum over the
local conditions on primes p | r|A|, and the latter sum is finite (since we may assume that M > r|A|). In particular,
we may bound the contribution from primes dividing r|A| by some constant C′. We may replace the sum over S by
a sum over tuples of pairwise relatively prime squarefree integers (qG,H) where G ranges over the subgroups of Sr
and H ranges over the subgroups of S|A|. For any S ∈ S, the integer qG,H is the product over all p ∈ S such that the
groups corresponding to p in S are G and H. We may also replace the condition maxS > M by the much weaker
bound max qG,H > M .

We will now bound the exponent of p in the product. Note that by [15], Theorems III.2.6 and III.2.9, we know that
there exists ramification indices ej and inertia degrees fj such that dp,S,1 =

∑
j(ej −1)fj and

∑
j ejfj = r. Likewise,

there is some integer e | |A| greater than 1 such that dp,S,2 = |A|(e− 1)/e (remember that we are considering Galois
A-extensions, so there is only one ramification index and one inertia degree). If r = 3, note that the inertia group at p
corresponds to a totally ramified extension if and only if dp,S,1 = 2 (in fact this is the maximum value of dp,S,1). Then,
we will assume that gcd(6, |A|) = 1 (this is stricter than the assumption used in [17]; the extension to 3 | |A| uses
similar methods, but requires more casework, and will be omitted here). In this case, dp,S,2(dp,S,1−r)/|A| ≤ 4/5(2−3),
and accounting for the factor of p−t+ε, we note that the largest possible power of p in the product is p−8/5+ε. For
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r = 4, a similar argument applies, because if dp,S,1 is its maximum value of 3, the inertia group corresponds to an
overramified (in fact totally ramified) extension and 2 is the maximum value achieved by other inertia groups. Note
that the uniformity theorem for r = 4 is more naturally proved for overramified extensions [1, 17], hence it is stated
that way. The largest possible power of p in the product is again p−8/5+ε. If r = 5, note that now t = 4/15 and
dp,S,2 ≥ 6|A|/7, hence the largest possible power of p in the product is p−6/7p−4/15+ε = p−118/105+ε (from the totally
ramified case).

Combining all of the above results, we find that

N(Sr ×A,X)−NM (Sr ×A,X) ≤ CC′X1/|A|
∑

max(qG,H )>M

∏
G,H

q
−118/105+ε
G,H

≤ CC′DX1/|A|
[ ∞∑
q=1

q−118/105+ε
]D−1

∞∑
q=M+1

q−118/105+ε

≤ CC′DX1/|A|ζ(118/105− ε)D−1
∞∑

q=M+1

q−118/105+ε.

As the series for ζ(−118/105 + ε) converges for sufficiently small ε, the right hand side is well defined. Further, if
we combine this with equation (7), since CM is increasing, and the previous result bounds CM from above, as can be
seen by taking the limit supremum as X →∞ of X−1/|A|N(Sr ×A,X)), limM→∞ CM exists. Taking the same limit
supremum and then taking M →∞ shows that N(Sr ×A,X) ∼

(
limM→∞ CM

)
X1/|A|, which is the desired result.

In the remaining sections, we will describe the proof and necessary tools, such as the geometric sieve and the
parametrization of quintic rings, behind the uniformity theorem, and then give an overview of the proof in the case
r = 5. The cases r = 3, 4 in [17] which will not be covered here use class field theory methods.

3 The discriminant polynomial for non-Galois extensions

It turns out that there is a general polynomial, called fr in [3, 17], such that for an appropriate parametrization of
the rings of integers of non-Galois degree-r field extensions K/Q with GK ∼= Sr, the polynomial fr evaluated at a
field K is the discriminant of K. A suitable parametrization has been determined for r = 3, 4, 5, in terms of group
actions on vector spaces over Z. For the purposes of the proof of the uniformity theorem, Theorem 3, we will just
describe the construction for the case r = 5. For the rest of this section we will be following [2].

For any extension K/Q, the ring of integers OK is a free Z-module of rank [K : Q]. For any commutative ring
extension R/Z which is also a free Z-module of rank 5 (these are generalizations of the ring of integers of a number
field of degree 5 over Q), we may choose a basis 〈1, r1, r2, r3, r4〉. Then a commutative ring extension R/Z which is a
free module of rank 5 (simply known as a quintic ring) is determined by the coefficients Cijk defining the multiplicative
structure of the ring,

rjrk = C0
jk + C1

jkr1 + C2
jkr2 + C3

jkr3 + C4
jkr4.

An arbitrary set of coefficients {Cijk | 0 ≤ i ≤ 4, 1 ≤ j, k ≤ 4} will correspond to a quintic ring if it is symmetric in j
and k and the associative law holds.

The parametrization of quintic rings in [2] associates to a ring R resolvent rings S which are rank-6 free Z-modules,
and to every pair (R,S) a quadruple of 5× 5 skew-symmetric matrices up to GL4(Z)× SL5(Z) symmetry, that is, an
orbit of the tensor product Z4 ⊗ ∧2Z5 under the action of GL4(Z) × SL5(Z). For any element (M1,M2,M3,M4) ∈
Z4 ⊗ ∧2Z5, the structure coefficients Cijk of the ring are constructed as follows. For any 2m × 2m skew-symmetric
matrix B, the determinant of B is the square of a polynomial of degree m in the coefficients, and the Pfaffian of B
is defined as this polynomial. For m = 2, the Pfaffian of a 4× 4 skew-symmetric matrix B happens to be

Pf(B) =
1

2

∑
σ∈S4

sgn(σ)Bσ(1)σ(2)Bσ(3)σ(4) = B12B34 +B14B23 −B13B24,

which is quadratic in the coefficients of B. For a 5 × 5 skew-symmetric matrix M , there are 5 natural 4 × 4 skew-
symmetric submatrices Bi; these can be constructed from M by removing the ith row and the ith column. Then we
can define a symmetric bilinear form Q : ∧2Z5×∧2Z5 → Z5 such that (Q(X,X))i = 2(−1)i+1Pf(Bi), and a quadratic
form P (X) := 1

2
Q(X,X). (Note that for a general quadratic form P̃ (x) =

∑
1≤i≤j≤nAijxixj on Zn, we can define a

symmetric bilinear form with integer coefficients Q̃(x, y) =
∑

1≤i≤j≤nAij(xiyj + xjyi), then 2P̃ (x) = Q̃(x, x).) Now
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if i, j, k are distinct and nonzero, define

Cijk = sgn(ijk`)P (Mj)
TM` P (Mk),

Cijj = sgn(ijk`)Q(Mk,Mi)
TMiQ(Mi,M`),

where ` is the integer such that ijk` is a permutation of 1, 2, 3, 4. For any i and j, if k is the integer such that
{i, k} = {1, 2} or {3, 4}, and ` is the integer such that ijk` is a permutation of 1, 2, 3, 4 as before (if it exists,
otherwise set Cjij = 0), let

Cjij = sgn(ijk`)Q(Mj ,Mk)TM` P (Mi),

Ciii = sgn(ijk`)(Q(Mi,Mj)
TMkQ(M`,Mi)

−Q(Mj ,Mk)TM` P (Mi)),

C0
ij =

4∑
n=1

CminC
n
mj − CnijCmmn,

where any fixed n may be chosen for the last equation. It has been shown in [2] that this set of coefficients yields a
quintic ring R(M) because it satisfies the associative law (see [2] for more details), and in particular the last equation
holds for all n if it just holds for one value of n.

This particular parametrization of quintic rings is useful because of the following properties of this correspondence.
First, we will mention one useful lemma about the group action itself.

Lemma 7. (Bhargava, 2008) [2] For any v ∈ Z4 ⊗∧2Z5, the stabilizer of v in GL4(Z)× SL5(Z) is isomorphic to the
symmetric group S5.

We also mention that there is an invariant polynomial f5 for this action, and that the following theorem holds.

Theorem 8. (Bhargava, 2008) [2] For any M ∈ Z4 ⊗ ∧2Z5, the ring R(M) constructed above is invariant under

the action of GL2(Z) × SL4(Z). If two elements M and M̃ of the vector space V := Z4 ⊗ ∧2Z5 of quadruples of
5× 5 skew-symmetric matrices yield the same set of coefficients Cijk, and those coefficients correspond to a maximal

quintic ring R (that is, there is no quintic ring R′ ⊆ R), M and M̃ must be in the same orbit under the action of
SL5(Z). Further, for every maximal order R there is exactly one M ∈ Z4 ⊗ ∧2Z5 such that R = R(M). Under this
correspondence, for any M ∈ Z4 ⊗ ∧2Z5, Disc R(M) = f5(M).

4 The geometric sieve

The first part of the geometric sieve [4], is an estimate of the growth of the number of lattice points satisfying a set of
congruence conditions over an infinite set of primes in an expanding region, for example rB where B ⊆ Rn is a fixed
compact region and r → ∞. This part is known as the Ekedahl sieve [10], where the set of congruence conditions
is replaced by an appropriate algebraic variety over Z. We first start with the following lemma, which is useful in
constructing such an algebraic variety.

Lemma 9. (Bhargava, 2014) [4] Let f be a irreducible polynomial over Z in n variables (so that the greatest common
divisor of the coefficients is 1), let k be any positive integer, and let p be a prime. For any u ∈ Zn, say that f is
strongly a multiple of pk at u if f(u) ≡ f(v) ≡ 0 (mod pk) whenever u ≡ v (mod p). There is a subscheme Z ⊆ AnZ
(not depending on p) such that f is strongly a multiple of pk at u ∈ Zn if and only if the residue class u (mod p)
modulo p is a Z/pZ-point of Z.

Proof. We follow the method in [4]. Since f is irreducible, f has some nonzero coefficient modulo p. Let g ∈ Z[x1]
be the polynomial g(x1) := f(x1, u2, u3, . . . , un); then g reduces to a nonzero polynomial in (Z/pZ)[x1]. As g(u) is a
multiple of pk for all u ≡ u1 (mod p), by expanding g as a Taylor series g(u) = g(u1) + (u − u1)(dg/dx1)(u1) + . . .
(note that this series has deg g + 1 terms), and inserting u ≡ u1 (mod p), we find that dmg/dxm1 ≡ 0 (mod p) for
all 0 ≤ m ≤ k − 1. By the definition of g, we see that ∂mf/∂xm1 = 0 for 0 ≤ m ≤ k − 1. Then the subscheme
Z = V (∂mf/∂xm1 | 0 ≤ m ≤ k − 1) of AnZ satisfies the conditions.

We will prove a version [17] of the growth estimate for lattice points in an algebraic variety with only a finite
number of congruence conditions, where in the expanding region rB, r is now a lower triangular matrix acting on
B ⊆ Rn. The proof of such estimates [3, 17] involves induction on the dimension of the space, by considering an
appropriate projection AnZ → An−1

Z , finding a uniform estimate for the number of points on a fiber over some element
of An−1

Z , and summing over all the fibers (where the inductive hypothesis is used to count the number of fibers).
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Theorem 10. (Wang, 2017) [17] Suppose that Z is a closed subscheme of AnZ whose codimension is k. Let q be a
squarefree integer with m prime factors and a be a positive constant. For any lower triangular matrix L ∈ GLn(R)
such that Lii ≥ a for all i, and any compact region B ⊆ Rn,

|{x ∈ LB ∩ Zn | x ∈ Z(Z/qZ)}| ≤ CmD max
S⊆{1,2,...,n},|S|≤k

∏
r/∈S Lrr

qk−|S|

for some constant C depending only on Z, and some constant D only depending on a, B, and Z. In the above, x
denotes the residue class of x.

Proof. We will prove this by induction on n, following [17]. Suppose n ≥ 1, and (x1, x2, . . . , xn−1) ∈ Zn−1 is any
point. First, we will estimate the number of points in LB which are also in the fiber over this point, and then
we will use the result for n − 1 to estimate the number of points with fibers of dimension 0 and 1, which together
give the result for n. Choose some α > 1/2 such that for all b ∈ B, |bn| < α. If x := (x1, x2, . . . , xn) ∈ Zn has
x ∈ LB and x ∈ Z(Z/qZ), there is some constant β which depends on B, L, and xj for 1 ≤ j ≤ n − 1 such that
xn ∈ (Lnn(β − α), Lnn(β + α)). This can be seen by noting that for any u ∈ B, as L is lower triangular, (Lu)i is
a linear combination of u1, u2, . . . , ui with the coefficient of ui being Lii, and setting x = Lu for some u ∈ B and
−α < un < α. If x1, x2, . . . xn−1 are fixed, so are u1, u2, ..., un−1, and xn = β′ + Lnnun for some constant β′. If we
set β = β′/Lnn (note that Lnn ≥ a > 0), we find that |xn − Lnnβ| < Lnnα, as mentioned earlier.

Consider the subscheme Z′ ⊆ A1
Z consisting of those xn such that (x1, x2, . . . , xn) ∈ Z. If dimZ′ = 1, then an

approximation in which we ignore the congruence conditions from Z entirely will be sufficient, and we note that

|{xn | x ∈ LB ∩ Zn, x ∈ Z(Z/qZ)}| < 2αLnn + 1 ≤
(

2α+
1

a

)
Lnn.

If instead dimZ′ = 0, then Z′ is given by some equation f(xn) = 0. As f(xn) = 0 has at most deg f roots in Z/pZ
for every p dividing q, as q has m prime factors, the variety Z′(Z/qZ) has at most (deg f)m points. For any given
v ∈ Z/qZ, as

|(Lnn(β − α), Lnn(β + α)) ∩ {xn ∈ Z | xn ≡ v(mod q)}|

=
∣∣∣Z ∩ (Lnn(β − α)− v

q
,
Lnn(β + α)− v

q

)∣∣∣ < 2αLnn
q

+ 1,

we find that

|{xn | x ∈ LB ∩ Zn, x ∈ Z(Z/qZ)}| ≤ (deg f)m
[
1 +

2αLnn
q

]
< 4α(deg f)m max

{
1,
Lnn
q

}
.

To complete the proof, we need to count the number of points (x1, x2, . . . , xn−1) that belong to each case. First,
consider the closure Z′ of the image of Z under the projection π : AnZ → An−1

Z . By definition, dimZ′ = dimπ(Z) ≤
dimZ, hence the codimension of Z′ is at least k. Consider the set T ⊆ An−1

Z of points y such that π−1(y) ⊆ Z (that
is, the fiber at y is one-dimensional). If {fi | 1 ≤ i ≤ r} is a set of defining polynomials for Z, we see that T is defined
by the polynomials in x1, x2, . . . , xn−1 which are the coefficients of the polynomials fi considered as polynomials in
just xn. Hence T is a closed subscheme of An−1

Z . As T ×A1
Z ⊂ Z, we see that T has codimension at least k in An−1

Z .
By the inductive hypothesis, we find that

|{y ∈ π(LB ∩ Zn) | y ∈ Y ′(Z/qZ)}| = |{y ∈ L′B′ ∩ Zn−1 | y ∈ Y ′(Z/qZ)}|

≤ Cm1 D1 max
S⊆{1,2,...,n−1},|S|≤k−1

∏
r/∈S Lrr

qk−1−|S|

where L′ is the matrix L with its nth row and column removed, B′ = π(B), C1 is a constant depending on just Z,
and D1 is a constant depending on a, B, and Z. Similarly,

|{y ∈ π(LB ∩ Zn) | y ∈ T (Z/qZ)}| = |{y ∈ L′B′ ∩ Zn−1 | y ∈ T (Z/qZ)}|

≤ Cm2 D2 max
S⊆{1,2,...,n−1},|S|≤k

∏
r/∈S Lrr

qk−|S|
,
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for constants C2 and D2 satisfying the same conditions as before. Hence,

|{x ∈ LB ∩ Zn | x ∈ Z(Z/qZ)}| <
(

2α+
1

a

)
Lnn|{y ∈ π(LB ∩ Zn) | y ∈ T (Z/qZ)}|

+ 4α(deg f)m max
{

1,
Lnn
q

}
|{y ∈ π(LB ∩ Zn) | y ∈ Y ′(Z/qZ)}|

≤ CmD max
S⊆{1,2,...,n},|S|≤k

∏
r/∈S Lrr

qk−|S|
,

where C = max{C1 deg f, C2} and D = 4αD1 + (2α+ 1/a)D2, concluding the proof.

The geometric sieve is a tool to calculate the number of values of a polynomial that satisfy a set of congruence
conditions. In the application in [4] to finding squarefree values, the set of conditions is infinite, but for the uniformity
theorem it is finite. The second step [3, 17] requires that the polynomial be an invariant for an appropriate action of
a group variety on a vector space, and will use the fundamental domain of this action to count the desired number.
For the uniformity theorem, a further averaging step [3, 6] is required, in particular, the following lemma will be
needed.

Lemma 11. [6, 17] Suppose that G is an affine group variety with an action on a vector space V of dimension n
defined in terms of polynomials, and let f be an invariant polynomial for this action. Suppose that V ′ ⊆ V is an orbit
for this action such that the stabilizer of any element of V ′ is finite. Suppose also that the action of G(Z) on G(R)
has a fundamental domain F . For any x > 0, any squarefree integer q, and any positive integer c, let Nq(V

′, c,X) be
the number of orbits of V ′ under the action of G(Z) such that |f | is bounded by X and f is strongly a multiple of pc

for all p|q. There exists a subscheme Z ⊆ AnZ such that for any compact subset B ⊆ V (R),

Nq(V
′, c,X) = C

∫
F
|{x ∈ gB ∩ V ′(Z) : |f(x)| ≤ X, x ∈ Z(Z/qZ)}|dg (8)

where dg is the Haar measure on G(R), and C is some constant depending only on B and the normalization of the
measure.

Proof. We follow [6] for much of the proof, and then follow [17] in rewriting the integral in terms of the subscheme
Z ⊆ AnZ . Note that some steps in [6] are not needed here as we explicitly compute the relevant integral in terms
of the Haar measure of the set G−1

B (defined below), and sum over the orbits later. Also, the argument in [6] is for
the specific group action relevant for parametrizing non-Galois cubic fields, so we prove the more general form that
would apply to quintic extensions that would be used in [17].

Choose any element w ∈ V ′, and consider the subset GB ⊆ G(R) consisting of all g ∈ G(R) such that gw ∈ B∩V ′,
and define G−1

B = {g−1|g ∈ GB}. We will now show that GB and G−1
B are compact whenever B is compact. As G(R)

embeds as a closed subset of AmR in the analytic topology for some m, a subset of G(R) is compact if and only if it
is closed and bounded (also in the analytic topology). Since the map GB → B is an n-fold cover of B defined by
regular functions, there exists an open ball around any point of B with bounded preimage. As B ⊆ V (R) is compact,
we see that GB is bounded and hence compact, and has finite measure. As inversion g → g−1 is a continuous map in
the analytic topology (it is also given by regular functions since G is a group variety), G−1

B is also compact and has
finite measure.

We will now derive a relation to help us count the orbits where |f | is bounded by X. Let S be the set of all x ∈ V ′
such that f(x) is strongly a multiple of pc for all p|q (as f is an invariant polynomial, S is G(Z)-invariant). Let O(y)
be the orbit of some y ∈ S under the action of G(Z), n be the size of the stabilizer of w under the action of G(R),
and F be the fundamental domain for the left action of G(Z) on G(R). If we choose c ∈ G(R) such that y = cw (as
G(R) is transitive), then for any x ∈ O(y), and g, h ∈ G(R), we see that ghw = x if and only if there exists some g′

in the stabilizer Sw of w under G(R) and some α ∈ G(Z) for which ghw = αcw and c−1α−1gh = g′, or equivalently,
g = αcg′h−1. For any compact set K ⊆ G(R), note that∑

α∈G(Z)

µ(αK ∩ F) =
∑

α∈G(Z)

µ(K ∩ α−1F) = µ(K),

for µ the Haar measure on G(R) (which is left-translation invariant, see [12]), so we obtain the relation∑
x∈O(y)

∫
F
|{h ∈ GB : ghw = x}|dg =

∑
α∈G(Z)
g′∈Sw

µ(αcg′G−1
B ∩ F) =

∑
g′∈Sw

µ(cg′G−1
B ) = nµ(G−1

B ). (9)
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Now we will sum over all orbits of S such that |f | is bounded by X. For any g ∈ F , we see that∑
x∈S, |f(x)|≤X

|{h ∈ GB : ghw = x}| = n|{x ∈ S ∩ gB : |f(x)| ≤ X}|,

as there are exactly n elements h ∈ GB such that hw = g−1x for any x ∈ gB. By Lemma 9, the subscheme Z ⊆ AnZ
defined by the polynomials ∂jf/∂xjn for all 0 ≤ j ≤ c− 1 has the property that

{x ∈ S ∩ gB : |f(x)| ≤ X} = {x ∈ gB ∩ V ′(Z) : |f(x)| ≤ X, x ∈ Z(Z/qZ)}.

Hence, summing equation (9) over the desired set of orbits gives

µ(G−1
B )Nq(V

′, c,X) =

∫
F
|{x ∈ gB ∩ V ′(Z) : |f(x)| ≤ X, x ∈ Z(Z/qZ)}|dg,

so that equation (8) holds with C = 1/µ(G−1
B ).

5 The Uniformity Theorem for S5 quintic extensions

We would like to find an estimate for the number of non-Galois S5 quintic extensions of Q which are totally ramified at
a specified set of primes, and we will count these by discriminant, so we will count those extensions whose discriminant
is bounded by X. This will be a part of the error term for Malle’s conjecture for non-Galois S5 × A degree-5|A|
extensions of Q, so we will not need the precise constant factor. In particular, we will show that

Nq(S5, X) = O(X/q4/15−ε)

for any ε > 0. We will follow [17] for the rest of this section unless otherwise noted, in this outline of the proof of the
uniformity theorem for r = 5.

By the results in Section 3, quintic rings can be parametrized by orbits of the vector space V (Z) = Z4 ⊗ ∧2Z5

under the left action of G(Z) = GL4(Z)× SL5(Z), and the discriminant of a quintic ring is the value of the invariant
polynomial f5 of degree 40 defined on this vector space. We would like to apply Theorem 10 and Lemma 11 to
bound the number Nq(S5, X), but we must first rewrite the problem in terms of strong multiples of an appropriate
polynomial.

Suppose that K/Q is a non-Galois S5 quintic extension totally ramified at some prime p. We claim that the
discriminant polynomial f5 is strongly a multiple of p4 at the element v ∈ V (Z) corresponding to this extension. We
will perform the computation more explicitly, rather than use Theorems III.2.6 and III.2.9 of [15], as we will show
that this can be determined from the congruence classes of the structure constants of OK in an appropriate basis.
Suppose that p ramifies as p = p5 in K. As OK/pOK ∼= Z/pZ, for any integral basis {1, r1, r2, r3, r4} for OK , we may
construct an integral basis {1, r′1, r′2, r′3, r′4} such that vp(r′i) = i, as follows. Choose some integer 0 ≤ α00 ≤ p − 1
such that α00 ≡ r1 (mod p), and let r′1 = r1 − α00, then r′1 ∈ p. Next, choose some integers 0 ≤ α10, α11 ≤ p− 1 such
that r2 ≡ α10 +α11r

′
1 (mod p2); we may define r′2 := r2−α11r

′
1−α10 which is evidently an element of p2. Proceeding

in this way yields a set {1, r′1, r′2, r′3, r′4} which is an integral basis by construction. The discriminant of the ring OK
(as defined in [2, 15]) is det Tr(r′ir

′
j) where r′0 = 1, and Tr(r) is the trace of the multiplication-by-r map. For any

0 ≤ k ≤ 4, if we write r′ir
′
jr
′
k =

∑4
`=0 dijk`r

′
` for integers dijk`, then every term on the right hand side has a different

p-adic valuation, so that vp(dijkk) ≥ i+ j and p|Tr(r′ir
′
j) whenever (i, j) 6= (0, 0). As all but one of the entries of the

5 × 5 matrix (r′ir
′
j)0≤i,j≤4 are multiples of p, the discriminant of K is a multiple of p4. To see that f5 is strongly

a multiple of p4 at the corresponding point v ∈ V (Z), pick any w ∈ V (Z) with w ≡ v (mod p). As the structure
constants of the ring associated to w are congruent to the structure constants of the ring associated to v modulo p
(from the explicit equations for the structure constants in Section 3), we may deduce the desired result as the trace
formula [2, 15] for the discriminant only depends on the structure constants of the ring.

The next step is to check that the conditions on the group action in Lemma 11 do hold for the action of GL4(Z)×
SL5(Z) on Z4 ⊗∧2Z5. We will not explicitly verify these axioms, but we will note that the following facts have been
proved about this action. First, the action of G(R) on V (R) is known to have three orbits [3], the stabilizer of any
element of V (C) is the group S5 (Lemma 7), and the there is a fundamental domain for the action of G(R) on V (R)
[3].

We will now outline the proof. Recall that in the statement of Theorem 10, the lower triangular matrix is assumed
to have all diagonal entries to be positive and to be larger than some fixed constant. We can then split the vector
space into many regions, depending on whether certain coordinates are zero or not (see[3]). Then in each region, the
integral over the fundamental domain can be bounded by applying Theorem 10 to the integrand, and then choosing
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an appropriate measure for the domain ([3] gives such a measure). Note at this step, we have to use the fact (see
[4, 17]) that the variety defined by f5 and its first three partial derivatives with respect to one variable does have
codimension 4. Bounding this integral for each region, and summing over all of the regions, yields the theorem.

6 Other results

We briefly mention other results concerning Malle’s Conjecture. The conjecture has been proven (including [5, 8]) for
the embeddings S3 → S6 (corresponding to Galois S3 extensions, the proof uses the Davenport-Heilbronn Theorem
for the asymptotics for non-Galois cubic extensions, and the fact that every S3 extension contains a unique non-Galois
cubic extension) and D4 → S4 (by proving that the associated Dirichlet series are holomorphic in the appropriate
domain). We also note that Klüners [11] came up with a counterexample to the conjecture, for a particular class of
degree-6 field extensions L/Q for which there exists an intermediate field K with Gal(L/K) ∼= Z/3Z and Gal(K/Q) ∼=
Z/2Z.
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